
10.5 Distance of a Point From a Line

The distance of a point from a line is the length of the perpendicular drawn from the point to the line. Let L: Ax + By + C = 0 be a line, whose distance from the point P (x_1, y_1) is d. Draw a perpendicular PM from the point P to the line L (Fig10.19). If

the line meets the x-and y-axes at the points Q and R, respectively. Then, coordinates

of the points are $Q\left(-\frac{C}{A}, 0\right)$ and $R\left(0, -\frac{C}{B}\right)$. Thus, the area of the triangle PQR is given by

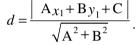
area
$$(\Delta PQR) = \frac{1}{2}PM.QR$$
, which gives $PM = \frac{2 \text{ area } (\Delta PQR)}{QR}$... (1)

Also, area
$$(\Delta PQR) = \frac{1}{2} \left| x_1 \left(0 + \frac{C}{B} \right) + \left(-\frac{C}{A} \right) \left(-\frac{C}{B} - y_1 \right) + 0 \left(y_1 - 0 \right) \right|$$

$$= \frac{1}{2} \left| x_1 \frac{C}{B} + y_1 \frac{C}{A} + \frac{C^2}{AB} \right|$$

or 2 area
$$(\Delta PQR) = \left| \frac{C}{AB} \right|$$
. $|A_{x_1} + B_{y_1} + C|$, and

$$QR = \sqrt{\left(0 + \frac{C}{A}\right)^2 + \left(\frac{C}{B} - 0\right)^2} = \left|\frac{C}{AB}\right| \sqrt{A^2 + B^2}$$


Substituting the values of area (ΔPQR) and QR in (1), we get

$$PM = \frac{\left| A_{x_1} + B_{y_1} + C \right|}{\sqrt{A^2 + B^2}}$$

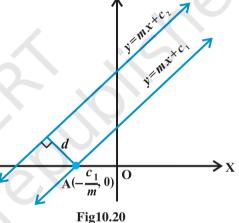
or

$$d = \frac{\left| A_{x_1} + B_{y_1} + C \right|}{\sqrt{A^2 + B^2}}.$$

Thus, the perpendicular distance (d) of a line Ax + By + C = 0 from a point (x_1, y_1) is given by

10.5.1 Distance between two

parallel lines We know that slopes of two parallel lines are equal.


Therefore, two parallel lines can be taken in the form

$$y = mx + c_1 \qquad \dots (1)$$

and $y = mx + c_2$

Line (1) will intersect x-axis at the point $X' \le$

Distance between two lines is equal to the length of the perpendicular from point A to line (2). Therefore, distance between the lines (1) and (2) is

$$\frac{\left| (-m)\left(-\frac{c_1}{m}\right) + (-c_2) \right|}{\sqrt{1+m^2}} \quad \text{or } d = \frac{\left| c_1 - c_2 \right|}{\sqrt{1+m^2}}.$$

Thus, the distance d between two parallel lines $y = mx + c_1$ and $y = mx + c_2$ is given by

$$d = \frac{\left| c_1 - c_2 \right|}{\sqrt{1 + m^2}} .$$

If lines are given in general form, i.e., $Ax + By + C_1 = 0$ and $Ax + By + C_2 = 0$,

then above formula will take the form $d = \frac{\left| C_1 - C_2 \right|}{\sqrt{A^2 + B^2}}$

Students can derive it themselves.

Example 18 Find the distance of the point (3, -5) from the line 3x - 4y - 26 = 0.

Solution Given line is
$$3x - 4y - 26 = 0$$
 ... (1)

Comparing (1) with general equation of line Ax + By + C = 0, we get

$$A = 3$$
, $B = -4$ and $C = -26$.

Given point is $(x_1, y_1) = (3, -5)$. The distance of the given point from given line is

$$d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}} = \frac{|3.3 + (-4)(-5) - 26|}{\sqrt{3^2 + (-4)^2}} = \frac{3}{5}.$$

Example 19 Find the distance between the parallel lines 3x - 4y + 7 = 0 and

$$3x - 4y + 5 = 0$$

Solution Here A = 3, B = -4, $C_1 = 7$ and $C_2 = 5$. Therefore, the required distance is

$$d = \frac{|7-5|}{\sqrt{3^2 + (-4)^2}} = \frac{2}{5}.$$

EXERCISE 10.3

- 1. Reduce the following equations into slope intercept form and find their slopes and the y intercepts.
 - (i) x + 7y = 0,
- (ii) 6x + 3y 5 = 0,
- (iii) y = 0.
- Reduce the following equations into intercept form and find their intercepts on the axes.
 - (i) 3x + 2y 12 = 0, (ii) 4x 3y = 6,
- (iii) 3y + 2 = 0.
- 3. Reduce the following equations into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive *x*-axis.
 - (i) $x \sqrt{3}y + 8 = 0$, (ii) y 2 = 0,
- (iii) x y = 4.
- 4. Find the distance of the point (-1, 1) from the line 12(x + 6) = 5(y 2).
- 5. Find the points on the x-axis, whose distances from the line $\frac{x}{3} + \frac{y}{4} = 1$ are 4 units.
- 6. Find the distance between parallel lines (i) 15x + 8y - 34 = 0 and 15x + 8y + 31 = 0 (ii) l(x+y) + p = 0 and l(x+y) - r = 0.